skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ye, Xingchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  4. Free, publicly-accessible full text available October 3, 2026
  5. Chen, Qian; Zhang, Xin (Ed.)
    Abstract Over the last several decades, colloidal nanoparticles have evolved into a prominent class of building blocks for materials design. Important advances include the synthesis of uniform nanoparticles with tailored compositions and properties, and the precision construction of intricate, higher-level structures from nanoparticles via self-assembly. Grasping the modern complexity of nanoparticles and their superstructures requires fundamental understandings of the processes of nanoparticle growth and self-assembly.In situliquid phase transmission electron microscopy (TEM) has significantly advanced our understanding of these dynamic processes by allowing direct observation of how individual atoms and nanoparticles interact in real time, in their native phases. In this article, we highlight diverse nucleation and growth pathways of nanoparticles in solution that could be elucidated by thein situliquid phase TEM. Furthermore, we showcasein situliquid phase TEM studies of nanoparticle self-assembly pathways, highlighting the complex interplay among nanoparticles, ligands, and solvents. The mechanistic insights gained fromin situliquid phase TEM investigation could inform the design and synthesis of novel nanomaterials for various applications such as catalysis, energy conversion, and optoelectronic devices. Graphical abstract 
    more » « less
  6. Cu is an inexpensive alternative plasmonic metal with optical behaviour comparable to Au but with much poorer environmental stability. Alloying with a more stable metal can improve stability and add functionality, with potential effects on the plasmonic properties. Here we investigate the plasmonic behaviour of Cu nanorods and Cu–CuPd nanorods containing up to 46 mass percent Pd. Monochromated scanning transmission electron microscopy electron energy-loss spectroscopy first reveals the strong length dependence of multiple plasmonic modes in Cu nanorods, where the plasmon peaks redshift and narrow with increasing length. Next, we observe an increased damping (and increased linewidth) with increasing Pd content, accompanied by minimal frequency shift. These results are corroborated by and expanded upon with numerical simulations using the electron-driven discrete dipole approximation. This study indicates that adding Pd to nanostructures of Cu is a promising method to expand the scope of their plasmonic applications. 
    more » « less